2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | """Importing the Dependencies """ import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.metrics import accuracy_score """Data Collection and Analysis PIMA Diabetes Dataset """ # loading the diabetes dataset to a pandas DataFrame diabetes_dataset = pd.read_csv('.../diabetes.csv') pd.read_csv? # printing the first 5 rows of the dataset diabetes_dataset.head() # number of rows and Columns in this dataset diabetes_dataset.shape # getting the statistical measures of the data diabetes_dataset.describe() diabetes_dataset['Outcome'].value_counts() """0 --> Non-Diabetic 1 --> Diabetic """ diabetes_dataset.groupby('Outcome').mean() # separating the data and labels X = diabetes_dataset.drop(columns = 'Outcome', axis=1) Y = diabetes_dataset['Outcome'] print(X) print(Y) """Data Standardization""" scaler = StandardScaler() scaler.fit(X) standardized_data = scaler.transform(X) print(standardized_data) X = standardized_data Y = diabetes_dataset['Outcome'] print(X) print(Y) """Train Test Split""" X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, stratify=Y, random_state=2) print(X.shape, X_train.shape, X_test.shape) """Training the Model""" classifier = svm.SVC(kernel='linear') #training the support vector Machine Classifier classifier.fit(X_train, Y_train) """Model Evaluation Accuracy Score """ # accuracy score on the training data X_train_prediction = classifier.predict(X_train) training_data_accuracy = accuracy_score(X_train_prediction, Y_train) print('Accuracy score of the training data : ', training_data_accuracy) # accuracy score on the test data X_test_prediction = classifier.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, Y_test) print('Accuracy score of the test data : ', test_data_accuracy) """Making a Predictive System""" input_data = (5,166,72,19,175,25.8,0.587,51) # changing the input_data to numpy array input_data_as_numpy_array = np.asarray(input_data) # reshape the array as we are predicting for one instance input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) # standardize the input data std_data = scaler.transform(input_data_reshaped) print(std_data) prediction = classifier.predict(std_data) print(prediction) if (prediction[0] == 0): print('The person is not diabetic') else: print('The person is diabetic') |
No comments:
Post a Comment