Monday, 6 November 2023

Diwali Sales Analysis

 

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# import python libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # visualizing data
# %matplotlib inline
import seaborn as sns

# import csv file
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Diwali Sales Data.csv', encoding= 'unicode_escape')

from google.colab import drive
drive.mount('/content/drive')

df.shape

df.head()

df.info()

#drop unrelated/blank columns
df.drop(['Status', 'unnamed1'], axis=1, inplace=True)

#check for null values
pd.isnull(df).sum()

# drop null values
df.dropna(inplace=True)

# change data type
df['Amount'] = df['Amount'].astype('int')

df['Amount'].dtypes

df.columns

#rename column
df.rename(columns= {'Marital_Status':'Shaadi'})

# describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc)
df.describe()

# use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()

"""# Exploratory Data Analysis

### Gender
"""

# plotting a bar chart for Gender and it's count

ax = sns.countplot(x = 'Gender',data = df)

for bars in ax.containers:
    ax.bar_label(bars)

# plotting a bar chart for gender vs total amount

sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)

sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)

"""*From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men*

### Age
"""

ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')

for bars in ax.containers:
    ax.bar_label(bars)

# Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)

sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)

"""*From above graphs we can see that most of the buyers are of age group between 26-35 yrs female*

### State
"""

# total number of orders from top 10 states

sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)

sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')

# total amount/sales from top 10 states

sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)

sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')

"""*From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively*

### Marital Status
"""

ax = sns.countplot(data = df, x = 'Marital_Status')

sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)

sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)

sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')

"""*From above graphs we can see that most of the buyers are married (women) and they have high purchasing power*

### Occupation
"""

sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)

sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)

sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')

"""*From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector*

### Product Category
"""

sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Product_Category')

for bars in ax.containers:
    ax.bar_label(bars)

sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)

sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')

"""*From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category*"""

sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)

sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')

# top 10 most sold products (same thing as above)

fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind='bar')

"""## Conclusion:

###

*Married women age group 26-35 yrs from UP,  Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category*
"""




Link for Google Collaboratry: Click Here

No comments:

Post a Comment